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Abstract The portfolio revision process usually begins with a portfolio of assets rather

than cash. As a result, some assets must be liquidated to permit investment in other assets,

incurring transaction costs that should be directly integrated into the portfolio optimization

problem. This paper discusses and analyzes the impact of transaction costs on the optimal

portfolio under mean-variance and mean-conditional value-at-risk strategies. In addition,

we present some analytical solutions and empirical evidence for some special situations to

understand the impact of transaction costs on the portfolio revision process.

Keywords Portfolio revision � Transaction costs � Mean-variance �
Conditional value-at-risk (CVaR)

JEL Classification G11 � C61

1 Introduction

In Markowitz’s (1952) article, as well as in his book published 7 years later (Markowitz

1959), he suggests that investors should decide the allocation of their investment on the

basis of a trade-off between return and risk. More specifically, Markowitz quantifies the

‘‘return’’ and ‘‘risk’’ of a portfolio as the mean and variance of the random portfolio return,

and shows that one portfolio is preferred to another one if and only if it has higher expected

A. H. Chen
Edwin L. Cox School of Business, Southern Methodist University, Dallas, TX 75275, USA
e-mail: achen@mail.cox.smu.edu

F. J. Fabozzi (&)
Finance Department, EDHEC Business School, Nice, France
e-mail: frank.fabozzi@edhec.edu

D. Huang
Finance Department, Olin School of Business, Washington University, St. Louis, MO 63130, USA
e-mail: dashanhuang@go.wustl.edu

123

Rev Quant Finan Acc (2012) 39:509–526
DOI 10.1007/s11156-012-0292-1



www.manaraa.com

return and lower risk. This approach to portfolio selection allows for convenient compu-

tational recipes and geometric interpretations of the trade-off.1 The mean-variance model is

so intuitive and so strong that it has been continually applied to different areas within

finance and risk management (see Fabozzi et al. 2002 for applications).

Considering that investment decisions are usually made starting with a portfolio rather

than cash, and consequently some assets must be liquidated to permit investment in others,

Chen et al. (1971) were among the first to address this problem by considering the

transaction costs incurred in the process of portfolio revision. Actually, the costs associated

with buying or selling an earning asset (hereafter called transaction costs) should be

directly integrated into the portfolio optimization problem.

Since Chen et al. (1971), stimulating developments have been proposed for portfolio

revision with a variety of transaction costs. Here we mention a few important contributions

in the past two decades. Davis and Norman (1990) study the consumption and investment

decision in the case where the optimal buying and selling policies are charged equal

transaction costs. Adcock and Meade (1994) add a linear term for transaction costs to the

mean-variance risk term and minimize this quantity. Konno and Wijayanayake (2001)

consider a cost structure that is concave in the mean-absolute deviation model. Finally,

Lobo et al. (2007) provide a model for the case of linear and fixed transaction costs that

maximizes the expected return subject to the variance constraint.

Michaud (1998) finds two interesting phenomena. First, the mean-variance model

usually generates high portfolio turnover rates. Second, the optimal portfolios are often

counter-intuitive because they are characterized by a lack of diversification with extreme

allocations made to just a few assets. For these reasons, it seems interesting to examine

how transaction costs in the mean-risk model affect portfolio turnover and diversification.

That is, do transaction costs matter in portfolio revision, and could the control of trans-

action costs improve portfolio performance?

Although the expected return can be easily quantified, there is no consensus on the

measurement of risk in the mean-risk framework. That is, without a set of unified axioms,

we cannot deduce if ‘‘the best’’ risk measure exists. The concept of a coherent risk measure

as introduced by Artzner et al. (1999) provides guidance for identifying the properties of a

good risk measure. Several alternative risk measures for portfolio optimization have been

proposed in the literature. These portfolio risk measures fall into two classes of risk

measures: dispersion measures and safety-first measures. Several of these proposed risk

measures have become widely utilized in practice.2 Among those alternative risk measures,

by far the two most popular portfolio risk measures are value at risk (VaR) and conditional

value-at-risk (CVaR). Although VaR and CVaR are superior to variance because they

provide better measures of downside risk than variance and allow for asymmetric distri-

butions, there are two reasons for the preference in portfolio and risk management of CVaR

relative to VaR.3 First, CVaR takes into account not only the probability but also the size of

the loss. Second, unlike VaR, CVaR satisfies the properties for a coherent risk measure

while VaR fails to do so.

1 Although Elton et al. (1976) argue that the Markowitz model is needlessly formalistic and introduce less
computationally intensive alternative models of portfolio selection, Frankfurter et al. (1999) find that the ex
post performance of the mean-variance model outperforms these alternative models.
2 For a summary of these measures, see Ortobelli et al. (2005). The use of alternative risk measures in
practice is described in Dembo and Rosen (2000) and Ortobelli et al. (2005).
3 Baixauli and Alvarez (2006) examine the impact of different conditional distribution functions on the
accuracy of VaR estimates.
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In this paper, we revisit the portfolio revision problem with transaction costs using

variance and CVaR as risk measures. The reason for this choice is natural: These two risk

measures are typical representatives of symmetric and asymmetric risk measures. Based on

the empirical evidence, although the monthly or longer returns of financial assets might

exhibit the property of a normal distribution, weekly or shorter (especially daily) returns

exhibit skewness and kurtosis, calling for an asymmetric risk measure. The variance and

CVaR can accommodate different kinds of risky assets and related returns. Interest in the

mean-variance model and in the mean-CVaR model is apparent in the recent literature

(Agarwal and Naik 2004; Levy and Levy 2004; Alexander et al. 2007).

We focus on static portfolio revision (single period), i.e., on revision based on a single

decision at the start of the horizon, although the revision may cover several time periods

(multiple periods). The main reasons for doing so are that the current multi-period portfolio

strategies—such as multi-stage mean-variance criteria—are employed in a myopic manner

and the decision maker in each period maximizes the next-period objective. While this

strategy allows analytical tractability and abstracts from dynamic revising considerations,

there is growing evidence that temporal portfolio revision may compromise a significant

part of the total demand for risky assets (Campbell and Viceira 1999; Brandt 1999).

Actually, the key issue has been the inability to directly apply the ‘‘principle of optimality’’

of the traditional dynamic programming approach due to the failure of the iterated

expectations property for the mean-variance or mean-CVaR objectives.

This paper differs from Chen et al. (2010) in three ways. First, in this paper we explore

how transaction costs affect portfolio revision when a downside risk measure such as

CVaR is used. Second, we propose how to integrate CVaR and variance to deal with the

difficulty of estimating the expected return, hence the difficulty of finding a robust port-

folio. Third, the empirical evidence on the effect of transaction costs on mean-variance and

mean-CVaR is different. In particular, we compare the efficient frontiers in the mean-

deviation and mean-CVaR spaces and demonstrate that although their efficient frontiers are

close to each other when ignoring transaction costs, they are significantly different in the

presence of transaction costs.

Black and Litterman (1992), as well as others (Best and Grauer 1991; Chopra 1993;

Chopra and Ziemba 1993), have pointed out that for the mean-variance framework, a small

perturbation of the inputs may result in a large change in the optimal portfolio, implying

that the parameters should be estimated precisely enough, especially for the expected

return. However, the expected returns are estimated from real data, which are often prone

to errors. Thus, the lack of robustness of inputs usually entails extreme positions in the

assets of the optimal portfolio and delivers a poor out-of-sample performance. To reduce

the uncertainty in the expected return, we also investigate the effect of transaction costs

with the CVaR-variance model recently proposed by Zhu et al. (2007).4

The rest of this paper proceeds as follows. Section 2 describes the basic formulation for

the portfolio revision problem with transaction costs. Section 3 considers the portfolio

revision decision of Chen et al. (1971) in the mean-variance framework. Section 4 dis-

cusses portfolio revision using a CVaR objective. Section 5 considers portfolio revision

with a CVaR-variance model. Section 6 gives a simple practical application, followed by a

summary of our conclusions in Sect. 7.

4 For a comprehensive discussion of robust portfolio management and the associated solution methods, see
Fabozzi et al. (2007).
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2 Problem formulation

In this section, we formulate the portfolio revision problem with transaction costs as a

standard mathematical optimization problem with the mean-risk framework. We will

employ the following notation.

N: number of risky assets;

e: vector with all entries equal to ones;

y0: amount invested in the risk-free asset before portfolio revision;

y: amount invested in the risk-free asset after portfolio revision;

x0: initial risky assets before portfolio revision;

xb: purchases of the risky assets;

xs: sales of the risky assets;

x: portfolio invested in risky assets after portfolio revision, x = x0 ? xb - xs;

cbð�Þ : transaction costs associated with buying risky assets where cbð�Þ� 0 (for cash

we set ccash = 0, that is, one only pays for buying and selling the assets and not

for moving the cash in and out of the account);

csð�Þ : transaction costs associated with selling risky assets where csð�Þ � 0;
rf : risk-free rate of interest;

r : actual return of risky assets with expectation �r ¼ EðrÞ and �r 6¼ rf e:

R ð� 0Þ : covariance matrix of the portfolio return.

Although the concept of the desirability of diversification can be traced back to Daniel

Bernoulli who argues by example that it is advisable for a risk-averse investor to divide

goods which are exposed to some small danger into several portions rather than to risk

them all together, Markowitz is the first one to mathematically formulate the idea of the

diversification of an investment portfolio by defining the variance as a measure of eco-

nomic risk (Markowitz 1999; Rubinstein 2002). Through diversification, risk can be

reduced (but not necessarily eliminated) without changing expected portfolio return.

Markowitz rejects the traditional hypothesis that an investor should simply maximize

expected returns. Instead, he suggests that an investor should maximize expected portfolio

return while minimizing portfolio risk of return, implying a trade-off between expected

return and risk.

While the mean-risk model was first proposed for the portfolio optimization problem

where the economic conditions and investment opportunities are assumed to be static over

the planned horizon, the composition of a portfolio of risky assets, however, will generally

change over time because of random outcomes of the returns on its constituent assets in the

subperiods prior to the horizon. Adjustment of the proportions of the assets may thus be

necessary in order to re-establish an efficient portfolio at the beginning of each sub-period

in the planned interval. The investor would also want to adjust the portfolio composition if

his expectations or risk aversion changed. The opportunities to adjust the portfolio enable

the investor to increase his expected utility at the horizon and therefore should be taken

into account in making investment decisions. Given that the investment decisions are

usually made starting with a portfolio of assets rather than cash, some assets must be

liquidated to permit investment in other assets, incurring transaction costs in the process of

portfolio revision.

More specifically, consider an investment portfolio that consists of holdings in some or all

of n risky assets and one risk-free asset. Suppose the expected return, risk, and transaction

costs are r(x, y), q(x), and c(x), respectively. We can easily formulate the problem as
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ðP0Þ max rðx; yÞ � cqðxÞ ð1Þ

s.t. x ¼ x0 þ xb � xs; ð2Þ

yþ e0xþ cðxÞ� 1; ð3Þ

xb � xs ¼ 0; ð4Þ

xb� 0; xs� 0; ð5Þ

where xb � xs ¼ 0 is a complementary constraint, i.e., xj
bxj

s = 0 for j ¼ 1; � � � ; n. c[ 0 is the

coefficient of risk aversion (the larger the value of c, the more reluctant the investor is to

take on risk in exchange for expected return). Notice here that we do not include the

position y in q(x) and c(x) since we have assumed that increasing or decreasing the risk-

free asset does not incur any risk and transaction costs.

The number x in (2) represents the portfolio position to be chosen explicitly through

sales xs and purchase xb that are adjustments to the initial holding x0. The second constraint

(3) is the budget constraint. In contrast to the traditional constraint, there is a new term,

transaction costs. Without loss of generality, we normalize the investor’s initial wealth, i.e.,

y0 ? e0 x0 = 1. The complementary constraint (4) and the nonnegative constraint (5) rule

out the possibility of simultaneous purchases and sales. In practice, simultaneously buying

and selling (choosing xb [ 0 and xs [ 0) can never be optimal because making the allo-

cation to one asset increases and decreases at the same time, thereby incurring unnecessary

transaction costs (Dybvig 2005).

While we leave the specification of portfolio risk q(x) to later, throughout this paper we

assume that transaction costs are separable; that is,

cbðxÞ ¼
Xn

j¼1

cb
j ðxjÞ;

csðxÞ ¼
Xn

j¼1

cs
j ðxjÞ;

where cjð�Þ is the transaction cost function for asset j. We will focus on the proportional

transaction cost—proportional to the total dollar value of the selling/buying assets—and

investigate its impact on the portfolio revision policy.5 For the treatment of non-convex

transaction costs, see Konno and Wijayanayake (2001) and Best et al. (2005). Hence, a

balance constraint that maintains the self-refinancing strategy including transaction costs is

given as

yþ e0xþ
Xn

j¼1

cb
j xb

j þ
Xn

j¼1

cs
j x

s
j � e0x0 þ y0 ¼ 1:

For computational convenience, some papers directly discard the complementary

condition (4) (see Krokhmal et al. 2001; Lobo et al. 2007 for instance). Theoretically,

5 One might argue that because transaction costs are measured in the same dollars as the mean return, it
should simply be added to the mean. However, this is incorrect. Transaction costs affect both the expected
value and the variance of the ending wealth. Moreover, transaction costs cannot be directly added to the
mean. The reason is that given a portfolio, the objective is to rebalance it for a new optimal one. But it may
be possible that the initial weight for one asset is optimal in the new portfolio. In this case, it is unnecessary
to change that asset’s weight in the portfolio and so it does not make sense to add the transaction cost to the
mean.
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discarding the complementary condition may lead to buying and selling a particular asset

simultaneously, which is obviously unreasonable. Also, if the risk-aversion coefficient c is

very large, then we may always select an optimal portfolio with zero weights on the risky

asset (x = 0), hence zero risk (q(0) = 0) by buying and selling the assets or investing all

wealth in the risk-free asset. However, Mitchell and Braun (2004) prove that the intractable

complementary constraint (4) can be removed in the presence of a risk-free asset.

In summary, we can equivalently rewrite (P0) as

ðP1Þ max rf yþ �r0x� cqðxÞ; ð6Þ

s.t. x ¼ x0 þ xb � xs; ð7Þ

yþ e0xþ
Xn

j¼1

cb
j xb

j þ
Xn

j¼1

cs
j x

s
j � 1; ð8Þ

xb � xs ¼ 0; ð9Þ

xb� 0; xs� 0: ð10Þ
Note that (P1) usually has some equivalent counterparts in the sense of expected return-

risk-cost efficient frontier: (1) maximizing expected return subject to given risk and

transaction costs or (2) minimizing risk subject to a given expected return or transaction

costs. Although maximizing expected return subject to a given risk and transaction costs

may be especially appealing to practitioners who have trouble quantifying their preferences

but may have an idea how much volatility and transaction costs are acceptable, we will

only focus on problem (P1) and analyze the efficient frontier by varying the risk-aversion

parameter c and transaction costs.

3 Mean-variance framework

Following Chen et al. (1971), we summarize the portfolio revision problem in the mean-

variance framework as

ðP2Þ max ðrf yþ �r0xÞ � cx0Rx ð11Þ

s.t. x ¼ x0 þ xb � xs; ð12Þ

yþ e0xþ cðxÞ� 1; ð13Þ

xb� 0; xs� 0: ð14Þ
In what follows, we investigate two special cases where a closed-form solution can be

obtained from (P2), and then explore the impact of transaction costs on the optimal

portfolio position (Chen et al. 1971).

3.1 Analytical results in the case of one risky asset and one risk-free asset

Suppose there are two assets in the portfolio: one risky asset and one risk-free asset with

the initial amount denoted by x0 and y0 (x0 ? y0 = 1), respectively. The risky asset has

mean �r and variance r2, whereas the risk-free asset has constant return rate rf and variance

zero. As analyzed above, it is never optimal to have xb [ 0 and xs [ 0 at the same time

because that would incur both cb and cs on the round-trip. We assume the optimal strategy
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calls for buying some risky asset, i.e., xb [ 0 and xs = 0. In this case, a risk-averse

investor’s strategy from (P2) reduces to

max rf yþ �r0x� cr2x2

s.t. x ¼ x0 þ xb;

yþ xþ xbcb ¼ 1:

With the first-order condition, we have the optimal solution

x� ¼ x0 þ xb� ¼ �r � rf ð1þ cbÞ
2cr2

¼ �r � rf

2cr2
� rf c

b

2cr2
:

Obviously, in the buying case, there are two terms. The first term is the optimal position

(with the highest Sharpe ratio),
�r�rf

2cr2 ; without considering the transaction costs. The second

term is the amount resulting from the transaction costs for buying the risky asset.

Now we consider the contrary case where the optimal strategy is to sell some risky

asset, i.e., xb = 0 and xs [ 0. Then the portfolio optimization problem (P2) reduces to

max rf yþ �rx� cr2x2

s.t. x ¼ x0 � xs;

yþ xþ xscs ¼ 1;

which delivers the optimal position as

x� ¼ x0 � xs� ¼ �r � rf ð1� csÞ
2cr2

¼ �r � rf

2cr2
þ rf c

s

2cr2
:

Similar to the buying case, the optimal solution also has two terms: the first one is the

optimal solution without considering transaction costs, and the second is the impact of

transaction costs incurred from portfolio revision.6 Also, if �r is fixed, cb [ 0 and cs [ 0, it

is apparent that

�r � rf

2cr2
þ rf c

s

2cr2
[

�r � rf

2cr2
� rf c

b

2cr2
;

which implies that if the initial position x0 is in
�r�rf

2cr2 � rf cb

2cr2 ;
�r�rf

2cr2 þ rf cs

2cr2

h i
; there is no

portfolio revision, no trade region.

It should be mentioned that we may generalize and expand the risky asset as the market

portfolio (or the market index) which has the highest Sharpe ratio. In this case, all investors

with different risk aversion c hold a mix of the market portfolio and the risk-free asset

according to the two-fund separation theorem. If the transaction cost cb or cs is too large,

then there is no portfolio revision (see Dybvig 2005).

3.2 Analytical results in the case of two risky assets

Now we consider the case of two risky assets with random returns r1 and r2, with means of

�r1 and �r2; and variances of r1
2 and r2

2. The correlation between these two assets is assumed

6 Both the buying and selling cases are consistent with footnote 5 that transaction costs cannot be simply
added to the mean.
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to be q. The composition of the optimal portfolio is the solution of the maximization

problem below, assuming symmetric transaction costs, cj
b(x) = cb(x) and cj

s(x) = cs|x|; and

further, the optimal strategy calls for buying some asset 1 and selling some asset 2, i.e., x1
b,

x2
s [ 0:

max ð�r1x1 þ �r2x2Þ � cðx2
1r

2
1 þ x2

2r
2
2 þ 2cqr1r2x1x2Þ

s.t. x1 ¼ xb
1 þ x0

1; x2 ¼ x0
2 � xs

2;

x1 þ x2 þ xb
1cþ xs

2c ¼ 1:

ð15Þ

Solving (15) yields the following solution:

x�1 ¼ x0
1 þ xb�

1 ¼
r2½�r1 � kð1þ cbÞ� � qr1½�r2 � kð1� csÞ�

2cr2
1r2ð1� q2Þ ;

x�2 ¼ x0
2 � xs�

1 ¼
r1½�r2 � kð1� csÞ� � qr2½�r1 � kð1þ cbÞ�

2cr1r2
2ð1� q2Þ ;

where k is the Lagrange multiplier and can be easily calculated from the budget constraint.

Strictly speaking, we should also develop the reverse case, namely, to sell asset 1 and

buy asset 2. The solution is entirely symmetric to (x1
*,x2

*) and is found simply by inter-

changing subscripts. In addition, there is also a region where the investor will not revise the

portfolio at all; that is, x1
* = x1

0 and x2
* = x2

0.

4 Mean-CVaR framework

In this section, we consider the mean-CVaR model for portfolio revision with transaction

costs. First, let f(x, r) denote the loss of a portfolio with decision vector x 2 X 	 <N and

random vector r 2 <N that represents the actual portfolio return. Suppose Eðjf ðx; rÞjÞ\þ
1 for each x 2 <N and r has a continuous density function p(r).7 For the purpose of clarity,

we may denote a random variable and the related deterministic variable/constant as the

same symbol since they can be distinguished clearly by context.

For a given portfolio x, the probability of the loss not exceeding a threshold a is given by

Wðx; aÞ ¼
Z

f ðx;rÞ� a

pðrÞdR:

Given a confidence level b, the VaR associated with portfolio x is defined as

VaRbðxÞ ¼ minfa 2 < : Wðx; aÞ�bg:

The corresponding CVaR is defined as the conditional expectation of the loss of the

portfolio exceeding or equal to VaR, i.e.,

CVaRbðxÞ ¼
1

1� b

Z

f ðx;rÞ�VaRbðxÞ

f ðx; rÞpðrÞdr:

Moreover, Rockafellar and Uryasev (2000) prove that CVaR has an equivalent definition

as follows:

7 By way of Rockafellar and Uryasev (2000), all the results can be applied to the case where r follows a
discontinuous distribution.
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CVaRbðxÞ ¼ min
a2<

Fbðx; aÞ;

where Fb (x, a) is expressed as

Fbðx; aÞ ¼ aþ 1

1� b

Z

r2<N

½f ðx; rÞ � a�þpðrÞdr;

where ½��þ is defined as [t]? = max{0, t} for any t 2 <: Thus, minimizing CVaR over

x 2 X is equivalent to minimizing Fb(x, a) over ðx; aÞ 2 X 
 <; i.e.,

min
x2X

CVaRbðxÞ ¼ min
ðx;aÞ2X
<

Fbðx; aÞ;

which implies that a pair (x*, a*) solves minðx;aÞ2X
< Fbðx; aÞ if and only if x* solves

minx2X CVaRbðxÞ: Moreover, Fb(x, a) is convex with respect to (x, a) and CVaRb(x) is

convex with respect to x; when f(x, y) is convex with respect to x and X is convex, the joint

minimization is a convex programming problem, which can be efficiently solved by an

interior algorithm.

More specifically, Rockafellar and Uryasev (2000) show that, under the mild assump-

tion of b[ 0.5 and normal distribution with mean �r and covariance R; CVaR reduces to

CVaRbðxÞ ¼ jbkR
1
2xk � �r0x; ð16Þ

where jb ¼
�
R U�1ð1�bÞ

�1
t/ðtÞdt

1�b ; k � k represents the standard Euclidean norm, /(�) and Uð�Þ are

the standard normal density and cumulative distribution functions, respectively. In this

case, we can write the portfolio optimization problem

min
x2X

jbkR
1
2xk � �r0x

as

min
ðx;vÞ2X
<þ

� �r0x

s.t. kR1
2xk� v;

which has an equivalent counterpart

min
ðx;vÞ2X
<þ

� �r0x

s.t. x0Rx� v2:

From the convexity of the problem and the Kuhn-Tucker conditions, there exists k such

that the above problem is equivalent to

min
x2X

cx0Rx� �r0x;

where c is a function of jb. Up to this point, the problem

min CVaRbðxÞ : �r0x� r0; x 2 X
� �

is equivalent to the problem
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min x>Rx : �r0x� r0; x 2 X
� �

in the efficient frontier sense when both target constraints are active.

On the other hand, when the distribution is not normal, to deal with the calculation of

the integral of the multivariate and non-smooth function in (16), Rockafellar and Uryasev

(2000) present an approximation approach via sampling method:

Fbðx; aÞ � aþ 1

Nð1� bÞ
XN

k¼1

½f ðx; r½k�Þ � a�þ;

where N denotes the number of samples with respect to the portfolio distribution and r[k]

denotes the k-th sample (we use the subscript [k] to distinguish a vector from a scalar).

Together with (P1), the portfolio revision can be cast as

ðP3Þ max ðrf yþ �r0xÞ � c aþ 1

Nð1� bÞ
XN

k¼1

uk

 !

s.t. uk � � x0r½k� � a;

uk � 0; k ¼ 1; . . .;N;

x ¼ x0 þ xb � xs;

yþ e0xþ
Xn

j¼1

cb
j xb

j þ
Xn

j¼1

cs
j x

s
j ¼ 1;

xb� 0; xs� 0:

From a practical perspective, there is a tractable advantage implied in (P3) that we can

solve a mean-variance optimization problem as a linear optimization problem if the

portfolio return follows a multivariate normal distribution. This is apparently non-trivial

since it eliminates the requirement of estimating the covariance matrix R from data, which

usually suffers from estimation errors. On the other hand, practical experience suggests

that the stability of the numerical solution of linear optimization is stronger than that of

quadratic ones in general. In this sense, the optimal portfolio from the mean-CVaR strategy

is more robust compared to the mean-variance approach. Notice that for continuous dis-

tributions, CVaR has several alternative names such as mean-shortfall or tail VaR (Acerbi

and Tasche 2002; Bertsimas et al. 2004).

4.1 Analytical results in the case of one risky asset and one risk-free asset

We consider a portfolio consisting of a risky asset and a risk-free asset with initial

endowment x0 and y0. These two assets are assumed to have the same characteristics as

described in Sect. 3.1: the risky asset has mean �r and variance r2, and the the risk-free asset

has constant return rate rf and variance zero. We also assume the optimal strategy requires

buying some risky asset, i.e., xb [ 0 and xs = 0.

From the above analysis, the optimal portfolio with mean-CVaR strategy will coincide

with the mean-variance optimal portfolio if the risky asset is normally distributed. For this

reason, in order to investigate the effect of transaction costs, the risky asset is assumed to

have a discrete distribution with sample space fr1; r2; . . .; rNg and Pfr ¼ rjg ¼ 1
N : Without

loss of generality, we also assume that the distribution is asymmetric (rj ? rN-j = 0) and

{r}j=1
N is in the increasing order:

518 A. H. Chen et al.

123



www.manaraa.com

r1� r2� � � � � rN :

Let S ¼ Nð1� bÞb c and �rb ¼ 1
S

PS
j¼1 rj: Using the definition given by (16), we obtain the

estimator of CVaR:

CVaRbðxÞ ¼ ��rbx: ð17Þ

Suppose the optimal portfolio is to buy some risky asset. We write the portfolio opti-

mization problem with transaction costs as

max rf yþ �rx� CVaRbðxÞ
s.t. x ¼ x0 þ xb;

yþ xþ xbxb ¼ 1:

This is a simple linear program with only one variable xb. Keep in mind that there is an

implicit constraint, xb C 0, since the optimal portfolio is supposed to buy some risky asset.

Equivalently, we may rewrite the optimization problem as

max ½�r þ c�rb � rf ð1þ cbÞ�xb : 0� xb� 1� x0
� �

: ð18Þ

Apparently, the optimal solution is either 0 or 1 - x0, which depends on the sign of

�r þ c�rb � rf ð1þ cbÞ: More specifically, if �r þ c�rb � rf ð1þ cbÞ\0; we have xb* = 0, i.e.,

there is no rebalancing of the risky asset and the initial portfolio (x0, y0) is optimal. On the

other hand, if �r þ c�rb � rf ð1þ cbÞ� 0; we have xb* = 1 - x0. One interesting phenom-

enon is that the optimal portfolio is independent of the variance of the risky asset.

4.2 Analytical results in the case of two risky assets

Now we consider the case where the two assets are risky with mean �r1 and �r2 for asset 1

and asset 2, respectively. Following the previous example, the two assets have the discrete

sample spaces {(rj
(1),rj

(2))}j=1
N with equal probability support for each scenario. Also, we

assume they are independent of each other.

To obtain an analytical solution, suppose r
ð1Þ
1 � r

ð1Þ
2 � � � � � r

ð1Þ
N and r

ð2Þ
1 � r

ð2Þ
2 �

� � � � r
ð2Þ
N : Then we have

CVaRbðxÞ ¼ ��r
ð1Þ
b x1 � �r

ð2Þ
b x2;

where �r
ð1Þ
b ¼ 1

S

PS
j¼1 r

ð1Þ
j ; �r

ð2Þ
b ¼ 1

S

PS
j¼1 r

ð2Þ
j ; and S ¼ Nð1� bÞb c: Suppose the transaction

costs are symmetric and the optimal portfolio requires buying some asset 1 and selling

some asset 2 such that x1
b [ 0 and x2

s [ 0. In addition, we assume x1 B 1 and x2 C 0.

max
xb

1
;xs

2

�r1x1 þ �r2x2 � cð��r
ð1Þ
b x1 � �r

ð2Þ
b x2Þ

s.t. xb
1 ¼ x1 � x0

1; xs
2 ¼ x0

2 � x2;

x1 þ x2 þ xb
1cb þ xs

2cs ¼ 1:

ð19Þ

Rearranging problem (19), we have

max �r1 þ c�r
ð1Þ
b � kð1þ cbÞ

h i
x1 � ½�r2 þ c�r

ð2Þ
b � kð1� csÞ�xs

2 : x0
1� x1� 1; 0� x2� x0

2

n o
:

Again, to satisfy our assumption of buying asset 1 and selling asset 2, we have
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�r1 þ c�r
ð1Þ
b � kð1þ cbÞ[ 0; �r2 þ c�r

ð2Þ
b � kð1� csÞ\0:

As a result, the optimal solution is

xb
1 ¼ 1� x0

1; x
s
2 ¼ x0

2:

5 Extension

In practice, the mean return and the covariance matrix are typically estimated based on a

sample of historical returns. These estimated values typically have large errors, particularly

for the mean returns. The mean-variance model can be very sensitive to the estimation

error in mean return: small differences in the estimate of �r can result in large variations in

the optimal portfolio composition. To protect the performance against estimation risk and

to alleviate the sensitivity of the mean-variance model to uncertain input estimates, min-

max robust optimization can be employed to generate the portfolio which has the best

performance under the worst-case scenarios. As demonstrated by Broadie (1993), because

the covariance matrix can typically be estimated more accurately than the mean return, in

this paper we ignore robust consideration with respect to R:
We first consider the min–max robust mean-variance portfolio:

min
x2X

max
r
�r0xþ cx0Rx

s.t. ðr � �rÞ0R�1ðr � �rÞ� v;
ð20Þ

where c is the risk-aversion parameter and v is a non-negative number.

For any feasible x 2 X; let us look at the following optimization problem with respect to

r:

min
r2<N

r0x

s.t. ðr � �rÞR�1ðr � �rÞ� v2:

Apparently, the objective is linear and the constraint is quadratic. Consequently, we can

use the necessary and sufficient Kuhn-Tucker condition to obtain its optimal solution

r� ¼ �r � vffiffiffiffiffiffiffiffiffi
x0Rx
p

with unique optimal objective value

�r0x� v
ffiffiffiffiffiffiffiffiffi
x0Rx
p

:

Therefore, problem (20) reduces to the following second-order cone program:

min
x2X
��r0xþ v

ffiffiffiffiffiffiffiffiffi
x0Rx
p

þ cx0Rx:

Since this is a convex programming problem, it is easy to show that there exist ~v� 0 such

that the above problem is equivalent to

min
x2X
� �r0xþ cx0Rx

s.t.
ffiffiffiffiffiffiffiffiffi
x0Rx
p

� ~v;

which is further equivalent to
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min
x2X

� �r0xþ cx0Rx

s.t. x0Rx� ~v2:

According to the convexity of the problem and the Kuhn-Tucker conditions, there exists a

ĉ� 0 such that the above problem is equivalent to

min
x2X
��r0xþ ~cx0Rx;

where ~c ¼ cþ ĉ.8 This is a surprising result. The robust mean-variance approach cannot

improve the portfolio performance, and instead, it has the same efficient frontiers as the

classical mean-variance model.

Let us revisit the traditional mean-variance model. Given the optimal portfolio is very

sensitive to the return mean, here we consider a CVaR robust mean-variance optimization

by replacing the mean by a CVaR measure (Zhu et al. 2007), that is

min
x2X

CVaRbðxÞ þ cx0Rx: ð21Þ

Problem (21) can be explained in this way. In the Markowitz framework, the investor’s

optimal strategy is to simultaneously maximize the expected return, �r0x; and minimize the

variance, x0Rx: On the other hand, we can also explain the negative of �r0x as the expected

loss of the portfolio. That means that theoretically the investor hopes to optimize the

portfolio by minimizing both the loss and variance. In practice, however, a plethora of

empirical studies (see, for example, Black and Litterman 1992; Broadie 1993) show that a

small perturbation of the inputs may lead to a large change in the optimal portfolio,

implying that the parameters should be estimated as precisely as possible. To reduce or

eliminate the estimation error in the mean, we may adopt an alternative by minimizing the

expected return of the worst-case scenarios, i.e., minimizing CVaR. In other words, while

min��r0x minimizes the expectation of all the losses, min CVaRbð��r0xÞ only minimizes the

expectation of those losses larger than VaR.

Now we are in a position to present the CVaR-variance portfolio revision problem with

transaction costs as the following optimization problem:

min aþ 1

Nð1� bÞ
XN

k¼1

uk þ cx0Rx

s.t. uk � � x>r½k� � a;

uk � 0; k ¼ 1; . . .;N;

x ¼ x0 þ xb � xs;

yþ e0xþ
Xn

j¼1

cb
j xb

j þ
Xn

j¼1

cs
j x

s
j � 1;

xb� 0; xs� 0:

It should be mentioned that our CVaR-variance model is different from the mean-

variance-CVaR model recently developed by Roman et al. (2007). While their model

provides an improved solution when a mean-variance efficient portfolio has an excessively

large CVaR or a mean-CVaR efficient portfolio has an excessively large variance, our

model principally deals with the difficulty of estimating the expected return that has been

8 For a detailed proof, see Zhu et al. (2007).
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addressed by several studies. Similarly, while we can also consider the situation where

transaction costs are paid at the end of the planning period, we omit it here.

6 Practical application

In this section, we present an illustrative example to demonstrate the impact of transaction

costs on the optimal portfolio to be rebalanced. In particular, we consider the problem of

portfolio revision using 10 industry portfolios with equal initial endowment. As mentioned

in Sect. 2, we normalize the initial portfolio, hence xj
0 = 0.1 for j ¼ 1; . . .; 10: The data are

available from the website of Kenneth French.9 Daily average value-weighted returns are

considered from January 1, 2000 to December 31, 2007.

First, we consider the impact of transaction costs on the efficient frontiers of mean-

variance and mean-CVaR optimal portfolios. In particular, the optimal portfolios can be

obtained by solving problems (P2) and (P3) respectively. From Fig. 1, transaction costs

must obviously be taken into account when employing an active portfolio trading strategy.

To highlight the effect, we consider three situations with different transaction costs,

cj
b = cj

s = 0, cj
b = cj

s = 1 %, and cj
b = cj

s = 2.5 %.10 As can be seen in the figure, the

efficient frontier is dramatically lowered by the transaction costs in a nonlinear pattern.

Here, we compare the performance of the mean-variance and mean-CVaR strategies with

and without transaction costs. As we mentioned earlier, as well as in Rockafellar and Uryasev

(2000), for normal distribution, or even the ellipsoidal distribution, these two methodologies

are equivalent in the sense that they generate the same efficient frontier. In practice, however,

for the non-normal, and non-symmetric distribution in general, mean-variance and mean-

CVaR may generate totally different optimal portfolios. While the mean-variance model

penalizes both the loss and gain deviating from the expected return, the mean-CVaR

approach aims at the left tail of the portfolio returns, corresponding to the high losses.

Without considering the transaction costs, Fig. 2 displays the mean-variance (left panel)

and mean-variance (right panel) efficient portfolios in both the variance-expected return

space and the CVaR-expected return space. In this section, we set all the confidence levels

b at 0.95. Notice in Fig. 2 that although the efficient frontiers are very close to each other,

the discrepancy between mean-variance and mean-CVaR solutions does exist. To explore

this discrepancy, we compare both solutions with respect to the ability to control downside

risk when revising the portfolio. More specifically, for the case where the expected return

is 0.1050, Fig. 3 shows the left tails of the empirical distributions of returns associated with

the mean-variance and mean-CVaR optimal portfolios.11 Apparently, the left tails of the

return distribution of the mean-CVaR optimal portfolio are thinner than that of the mean-

variance portfolio, implying the mean-CVaR optimal portfolio can perform better relative

to the mean-variance methodology in the case of downside world (other results are

available upon request). Figures 4 and 5 display efficient frontiers in the presence of

9 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data-library.htm.
10 We acknowledge that the transaction cost of 2.5 % may be a little bit large in practice and we use it here
only to make the figure look apparent.
11 To make the difference apparent, we only show the left tail/part of the whole distribution of portfolio
return. This figure is only used to show that mean-CVaR can generate a portfolio with a thinner tail relative
to mean-variance. In this sense, it has nothing to do with with extreme value theory that focuses on tail
distribution and has attracted a lot of attention in risk management and insurance.
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transaction costs. The discrepancy between the mean-variance and mean-CVaR solutions

are marginally significant relative to the case where transaction costs are ignored.

In general, the difference between the mean-variance and the mean-CVaR approaches is

not very significant. However, the close efficient frontiers do not imply that the mean-

variance optimal portfolio is close to the mean-CVaR optimal portfolio, and vice versa. In

their study, Krokhmal et al. (2001) suggest that the closeness of efficient portfolios gen-

erated from the CVaR and mean-variance optimizations may be attributable to their spe-

cific dataset where the returns did not depart significantly from the normal distribution. On

the other hand, the risk-expected return efficient frontier may be misleading for daily

returns. While a difference of 0.01 is marginal for one day in Figs. 4 and 5, it may yield a

2.5 discrepancy for one year (250 trading days).

7 Conclusion

In the portfolio revision process, there are always transaction costs associated with buying

and selling an asset due to brokerage fees, bid-ask spreads, taxes, etc. In this paper, we

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Standard Deviation

E
xp

ec
te

d 
R

et
ur

n 
(%

)

c=0

c=1%

c=2.5%

c=0

c=1%

c=2.5%

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

CVaR

E
xp

ec
te

d 
R

et
ur

n 
(%

)
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strategies in the presence of symmetric transaction costs cj
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consider the problem of portfolio revision with transaction costs which are paid at the

beginning of the planning horizon. We demonstrate that the impact of transaction costs can

be integrated into both the classical mean-variance and mean-CVaR frameworks and that

even some analytical solutions under mild assumptions can be obtained via optimization

techniques.
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